hasomed RehaMove®

FES Cycling with RehaMove Frequently Asked Questions

Medical questions

What is functional electrical stimulation (FES)?	. 4
What's the difference between FES and other forms of electrotherapy?	. 4
Classification of FES in electrotherapy	. 4
What's the advantage of FES Cycling compared with motion therapy without current?	. 5
For which clinical pictures the training can be used?	. 5
Which muscle groups can be stimulated?	. 5
What are the contraindications for FES therapy ?	. 5
Which training duration is recommended?	5
How does the stimulation work?	. 6
Important terms	6
Level of paralysis	. 7

Technical questions

How many muscles/ channels can be stimulated simultaneously?	8
Which electrode size is used for which application?	8
Where adhesive electrodes have to be placed?	8
Is it possible to use different electrodes?	8
Which pulse forms are used with the RehaStim2?	8

RehaMove

In which way the movement is synchronised with the stimulator?	9
Which parameters are available and what do they effect?	9
Which parameters are typically used for complete and incomplete paralysis?	9
How endurance and strength can be trained?	10
What is the ramp for?	10
Is it possible to adapt the current with increasing training duration?	10
With which motion trainer the RehaStim2 can be used?	10
When the adaptive training is used?	11
When the constant training is used?	11

Sequence training with RehaStim

How does the sequence training work?	.11
When the sequence training is used?	. 11
How can I get the sequence training?	.11
What is the difference between percent and second mode in sequence training?	.11
What effect has the button "Period" in the percentage sequence training?	.11
What effect has the button "Interval" in the second sequence training?	.11
Which trigger types are available?	.11

Medical questions

What is functional electrical stimulation (FES)?

- FES is a therapy method where nerves are stimulated with electrical current in order to cause a muscular contraction.
- \cdot The aim is to produce a functional movement.

What's the difference between FES and other forms of electrotherapy?

TENS	Usual devices for electrotherapy	Advantages FES with RehaMove
 Stimulation of blood circulation, muscle relaxation, and pain reduction No or low physiological contraction/ movement No building up muscle strength No complex stimulation 	 Only few channels No complex functional movement 	 Stimulation of functional movements Motorlearning and call up of neuro- muscular patterns Cycling due to connection with the MOTOmed External trigger (cause stimulation via manual switch) Different training options: sequence, adaptive/constant mode

Classification of FES in electrotherapy

	Current	Frequency	Pulse	Main application	Indication
FES with RehaMove	Alternating current (AC)	10-50 Hz	20-500 µs	Maintenance of muscle function or limitation of atrophy	Movement disorders after SCI and central lesions
Galvanisation	Constant current and direction			lontophoresis: improvement of motor excitability etc.	Arthrosis, Spondylosis, Tendinosis, Ligamentosis, Neuralgia, etc.
Russian stimulation	Alternating current (AC)	2,5 Hz	Rectangular pulses in "bursts" (pulse sequences)		
TENS	Stimulation current with weak AC	2-220 Hz	Monophasic or biphasic pulses 50-200 µs	Especially used for pain treatment (Analgesia)	Chronic, causally untreatable pain
Diadynamic currents	Currents with direct current (DC) and pulse current proportions	50-60 Hz	Sinusoidal half- waves, pulse width 8-10 ms	Analgesic, anti- inflammatory, reducing nerve pain, etc.	Rheumatic diseases, pain, Sudeck's Atrophy in case of disuse atrophy
Faradic current	Low-frequency stimulation currents (rectangular pulse)	40-80 Hz	Width: 0,5-5 ms, mo- nophasic or biphasic	Motor stimulation	Normally innervated, weak muscles, mild paresis
Exponential current	Rectangular pulse with pulses of increasing intensity	<1000 Hz	100 ms-800 ms	Maintenance of muscle function or limitation of atrophy	Completely denervated muscles

Sources: Bossert (2006) Guideline Elektrotherapy; Robertson et al. (2006) Electrotherapy explained-Principles and practice

What's the advantage of FES Cycling compared with motion therapy without current?

FES Cycling	Motion training without FES
 Physiological muscle activation with high training intensity Strong effects on the cardiovascular system by using the major muscles of the body high neuronal input by stimulating a high number of afferences Severe venous reflux Cosmetic aspects: muscle buildup Physiological effect: patients can "use" their arms and legs again 	 Passive movement of paralysed muscles, thus only low or no physiological activation

For which clinical pictures the training can be used?

- \cdot generally applicable in lesions with an intact lower motoneuron · Spinal cord injury · Cerebral palsy Stroke · ALS (Amyotrophic Lateral Sclerosis) • Traumatic brain injury (TBI) · Orthopaedic diseases · Multiple sclerosis
- · Guillain-Barré syndrome

- · Parkinson's disease
- · Chronic polyarthritis (Rheumatoid arthritis)
- · Muscle weakness and paralysis due to Impairments of the peripheral nerve

[Note: Patient's individual physical constitution or contraindications may forbid an FES application. Please consult your doctor before!]

Which muscle groups can be stimulated?

- · generally every paralysed muscle with an intact lower motoneuron
- \cdot the surface of the muscle must be large enough for electrode placement

What are the contraindications for FES therapy?

FES and the RehaMove should not be used by a few people:

- who use cardiac pacemakers
- \cdot with unhealed fractures in lower extremities if the legs shall be trained; in upper extremities, the area of the shoulder girdle and upper ribs if the arms shall be trained
- \cdot with damages of the rotator cuff or the potential luxation of the shoulder joint, if the arms shall be trained with epilepsy
- · with known allergies to electrode gel
- \cdot with metal implants underneath or near the muscle groups which are to be stimulated
- · pregnant women should desist from using stimulation because the possible adverse effects are unknown and have not yet been rigorously investigated

Which training duration is recommended?

- \cdot depending on the patient, the clinical picture, and the training aim
- · patient should be able to get used to the therapy
- training start: 5-10 minutes as the muscles are untrained and fatigue quickly
- \cdot up to 1 hour training per day is possible when training regularly
- higher therapeutic effect when training 3-4 times per week for 30 minutes

How does the stimulation work?

- · Electrical pulses activate the peripheral motor nerves leading to the corresponding muscles.
- \cdot Pulses pass between two electrodes and thus activate the nerves between the electrodes.
- · Each nerve has a particular threshold (all-or-nothing principle) triggering an action potential.
- Activation can take place when stimulation intensity is high enough (increase pulse width or current) in order to exceed this threshold.

Important terms

Innervation:	\cdot supply the human organism with nerves for stimulus conduction \cdot intact connection between nerve and muscle
Denervation:	\cdot no intact nervous connection between organ/ muscle and brain
Disuse atrophy:	· muscular atrophy
Afference:	\cdot all information are transferred via neuronal afferences from the periphery (arms, legs) to the central nervous system (CNS)
Afferent stimulus setting:	\cdot conscious and arbitrary muscle activation in order to produce a directed movement
Reafference:	\cdot information from the central nervous system to the periphery
Muscle tone:	 tension of the muscle can be influenced by the number of activated motor units or by excitation frequency higher muscle tone in case of spasms muscle tone depends on malpositions and contractures
Spasticity:	\cdot increased muscle tension with increased muscular proprioceptive reflex
Adduction:	\cdot movement towards the center of the body or towards body axis (e.g. foot lifting)
Abduction:	· lateral movement of a body part

Level of paralysis und related functions

CERVICAL Division:

- \cdot breathing (C1 C4)
- head & neck movement (C2)
- heart rate (C4 C6)
- shoulder movement (C6 C7)
- · hand & finger movement (C7 T1)

THORACIC Division:

- Sympatetic tone (T1 T12) (including temperature regulation)
- \cdot trunk stability (T2 T12)
- \cdot ejaculation (T11 L 2)

LUMBAR Division:

- \cdot hip motion (L2)
- \cdot Knee extension (L3)
- \cdot foot motion (L4 S 1)

■ • SACRAL Division:

- · bowel & bladder activitiy (S2 S3)
- \cdot penile erection (S2 S4)

C1

C2

С3

C4

C 5

Technical questions

How many muscles/ channels can be stimulated simultaneously?

 \cdot up to 8 stimulation channels/ 8 muscles

Which electrode size is used for which application?

- in general: the bigger the electrode the better (more comfortable for the user due to a lower current density)
- · electrode size depends on the area of the muscle to be stimulated: for small muscles it's recommended to
- use small electrodes and the other way round
- \cdot electrode forms: oval or rectangular

Where adhesive electrodes have to be placed?

- · centrally on the muscle belly
- \cdot for a higher therapeutic effect, electrodes have to be placed with a handbreadth between them
- \cdot shave if necessary to improve electrode adhesion and skin contact

Is it possible to use different electrodes?

- · due to guarantee and warranty claims we recommend the use of HASOMED electrodes
- \cdot adhesive electrodes of the company HASOMED can be used for up to 15 applications
- · application note: adhesive electrodes should not be used on skin where e.g. body lotion has been applied

Which pulse forms are used with the RehaStim2?

- \cdot stimulation with biphasic rectangular pulses
- \cdot the negative pulse ensures an active disloading to prevent electrolytic effects or skin irritations

RehaMove

In which way the movement is synchronised with the stimulator?

- \cdot stimulator and MOTOmed communicate via data cable
- data exchange of all relevant parameters (angle or position of the crank arm, rpm and rotational direction, symmetry, gear, time, distance)
- stimulation sequences of controlled channels are triggered by angle-based MOTOmed data; thus, the stimulator "knows" when to stimulate which muscle

Which parameters are available and what do they effect?

Frequency:	 number of pulses per second, indicated in Hertz (Hz) stimulation frequency determines the type of muscle fiber, which is activated, and which muscular strength is achieved optimum frequency for a muscle depends on the individual distribution of muscle fibers if the frequency is set too low, the muscle reacts only with twitching without strength between 10-50 Hz
Current:	 charge flowing per time, measured in Milliampere (mA) between 0-130 mA alternating current is used (balanced charge)
Pulse width:	· duration of pulses, measured in Microseconds (μs) · between 20-500 μs

Which parameters are typically used for complete and incomplete paralysis?

- \cdot generally depending on the clinical picture of the patient
- · start with low values and carefully increase gradually
- \cdot aim: a smooth and powerful contraction
- \cdot in case of spasticity, better use less Hz first to avoid an excessive increase of the muscle tone (up to 30 Hz)
- \cdot it's advisable to massage muscles before training to desensitize them, longer warm up phase
- in case of maintained sensitivity: the tolerance limit of the patient is the limit of stimulation (after familiarization phase, intensity can generally be increased gradually)

Complete SCI	Stroke, TBI and spinal cord lesion with (residual) sensibility
· Current: 40-90 mA	· Current: 30–40 mA
· Pulse width: 250-500 µs	· Pulse width: 100-300 µs
\cdot Current test starting with 0 mA/ 250 µs	\cdot Current test starting with 0 mA/ 100 μs
• MOTOmed: servo cycling with gear 0-1	 MOTOmed: servo cycling with gear 0-6

How endurance and strength can be trained?

- \cdot for strength training higher frequencies are necessary (starting with 30 Hz)
- \cdot for endurance training only lower frequencies are used (up to 30 Hz)
- · Type of muscle fiber:

Type I fibers – slow twitch	Type II fibers – fast twitch
 contract and relax slowly resistant to fatigue for endurance-type activities well supplied with blood: red stimulation with frequencies < 30 HZ 	 quick and powerful contraction white muscle fibers for "sprint" and muscular strength 2 subtypes: a) fast-fatigue-resistant b) fast-fatigable stimulation with frequencies > 30 Hz

What is the ramp for?

- · pulse width is built slowly and gradually
- · especially suitable for sensitive and anxious patients
- \cdot example: ramp 5; pulse is built in 5 steps with increasing intensity

Pulse width in µs

Is it possible to adapt the current with increasing training duration?

- \cdot depends on the patients adapting threshold and sensitivity
- \cdot during training, current can be adjusted for each channel; frequency and pulse width can be adjusted for all channels

With which motion trainer the RehaStim2 can be used?

• only use the RehaStim2 with the MOTOmed viva 2 (without light version) as arm and leg trainer

When the adaptive training is used?

- \cdot in general: therapist decides on the patient group to be treated
- \cdot adaptive training: adapts automatically to the patient's performance
- \cdot stimulation is adapted to the residual muscle function of the patient
- \cdot mostly used in incomplete and central paralysis: stroke, TBI
- · adjustment of maximum and minimum pulse width:
 - when a certain speed is reached, stimulation will stop slowly
 - stimulation starts again below this speed

When the constant training is used?

- \cdot in general: therapist decides on the patient group to be treated
- · constant training: stimulation intensity remains constant even if the patient pedals faster and more powerful
- \cdot mostly used in complete paraplegia

Sequence training with RehaStim

How does the sequence training work?

- \cdot RehaStim can be used without the MOTOmed as stand-alone device
- · cyclical movements of arms and legs can be trained (e.g. grasping, flexion)

When the sequence training is used?

- \cdot for activation or movement of single muscles
- in order to increase training intensity, e.g. alternating activation of quadriceps muscle and biceps muscle
- Sequence training is used where the RehaMove cannot be applied, e.g. when reinitiating complex motion sequences like grasping
- RehaStim includes templates for the most common applications e.g. FES walking, crawling, sit-to-stand or shoulder stabilization

How can I get the sequence training?

 \cdot can be activated via additional licenses for present stimulators

What is the difference between percent and second mode in sequence training?

- percent sequence training includes all templates for gait training/FES walking in percentage according to the natural gait phases in a complete gait cycle
- · second sequence training includes templates in seconds (start + duration of each single muscle in seconds)

What effect has the button "Period" in the percentage-sequence training?

- \cdot duration of the complete sequence is adjusted
- \cdot periods are adjustable in seconds

What effect has the button "Interval" in the second-sequence training?

- \cdot there is always a break between single sequences
- \cdot break times can be selected in steps of one second

Which trigger types are available?

- · Sequence training offers a manual or automatic triggering
- \cdot an additional external trigger software with external single or double trigger is available

RehaMove Solutions for Movement Therapy with FES

Germany

Paul-Ecke-Straße 1 Tel: +49 (0)391 / 6107 645 39114 Magdeburg Fax: +49 (0)391 / 61 07 640 www.rehamove.de

info@rehamove.de

